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Abstract 
 
The root cause of different oscillatory behavior of turbulent stress anisotropy under rapid rotation of initially axi-

symmetric turbulence is theoretically investigated. For this, based on the velocity spectral tensor of axisymmetric tur-
bulence, the rapid part of the pressure-strain is determined and the equation of the turbulent stress anisotropy is solved 
for initial conditions generated by axisymmetric expansion and contraction of isotropic turbulence. As is well known, 
the damping of turbulent stress anisotropy under rapid rotation is observed for both initial conditions, and this feature is 
attributed to the linear rapid rotation effect on turbulence. On the other hand, the oscillatory development of turbulent 
stress anisotropy can be seen conspicuously only for the initial turbulence generated by axisymmetric expansion. This 
selective oscillatory feature is found to be strongly related to the total strain that is applied to the isotropic turbulence to 
generate the initial axisymmetric turbulence. And, through an asymptotic approach, it is also found that the material 
frame-indifference principle of two-dimensional turbulence is the underlying physics in this different oscillatory behav-
ior. 
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1. Introduction 

It is well known that one of the most noticeable 
rapid rotation effects on initially anisotropic turbu-
lence is the damped oscillation of stress anisotropy of 
turbulence due to phase scrambling [1, 2]; and any 
conventional model of rapid pressure-strain based on 
the closure scheme with Reynolds stress tensor only 
cannot cope with this physics [3]. The damped oscil-
lation of turbulent stress anisotropy due to rapid rota-
tion has been well manifested for an initially weakly 
anisotropic model spectrum [1, 2] and an initial ani-
sotropic spectrum generated by the plain strain of 

isotropic turbulence [2, 4]. This physics was also 
demonstrated numerically for an initial anisotropic 
spectrum generated by axisymmetric expansion of 
isotropic turbulence [4]. Kassinos and Reynolds [5] 
investigated the rapid rotation effect on the axisym-
metric turbulence. They studied the behavior of the 
turbulent stress anisotropy due to the rapid rotation 
for an initially anisotropic turbulence generated by an 
axisymmetric contraction of isotropic turbulence. 
Their result shows clear damping of stress anisotropy. 
However, unlike previous studies [1, 2, 4], oscillation 
of the turbulent stress anisotropy is hardly noticeable. 
To investigate the reason for such discrepancy and to 
find the underlying physics, Kassinos and Reynolds’ 
[5] work for axisymmetric turbulence is extended in 
the present study, including both cases of initial con-
ditions generated by axisymmetric contraction or 
axisymmetric expansion of isotropic turbulence. 
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2. Analytic solutions for rapid rotating homo-
geneous turbulence 

The rotating homogeneous turbulence is an anisot-
ropic turbulence with a rotational axis as its axis of 
symmetry. In this respect, the velocity spectral tensor 
suggested by Cambon and Jacquin [6] for a general 
anisotropic turbulence subjected to the rotation can be 
a good starting point. In the present study, however, 
we use the velocity spectral tensor suggested by 
Kassinos and Reynolds [5] instead, considering the 
axisymmetric turbulence is the simplest form of rotat-
ing homogeneous turbulence for which any theoreti-
cal treatment is possible. 

Applying the invariant theory of turbulence with 
homogeneity and incompressibility conditions, the 
velocity spectral tensor ( )ij κΦ r  of axisymmetric 
turbulence with an additional reflectional symmetry 
in the plane normal to λ

r
 was determined by [5] 
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where κr  is wavenumber vector with ,i iκ κ κ=  

λ
r

 is symmetry axis with 1,i iλ λ =  ,i iα κ λ=  
2( )( / )ij ij i jP κ δ κ κ κ= −r  is a projection operator, and 

ijkε  is a permutation symbol. Here, ( , )κ αE  and 

5 ( , )C κ α  are even functions of ,α  and 9 ( , )C κ α  is 
an odd function of .α  Since the rapid part of pres-
sure-strain in the Reynolds stress equation at a refer-
ence frame rotating with a rate Ω

r
 is given by 
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substituting Eq. (1) into Eq. (2) gives 

, 3 5
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( 3 ).ij i jδ λλ×Ω −  (3) 
 
Note that zero mean strain is assumed and a coordi-
nate system in which 1κ  axis coincides with the 
rotation axis is used to derive the above result. Since 
we are concerned about the rapid rotation effect, the 
above equation can be simplified with the rapid dis-
tortion theory. Under a rapid distortion limit, the gov-
erning equation of the velocity spectral tensor is given 
by [7] 
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and substitution of Eq. (1) in Eq. (4), just as done by 
Kassinos and Reynolds [5], gives the following equa-
tions: 
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Their solutions are found to be 
 

( , , ) ( , ,0),tκ α κ α=E E   

5 5( , , ) ( , ,0)cos4C t C tακ α κ α
κ

= Ω  and 

9 5

1( , , ) ( , ,0)sin 4 .
2

C t C tακ κ α κ α
κ
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Considering the generation mechanism of axisym-
metric turbulence by straining an isotropic turbulence, 

9 ( , ,0)C κ α  is assumed to be zero in the above solu-
tions because it represents the breaking of reflectional 
symmetry that is unlikely to be present at the initial 
instant of generation. If 5 9/ 8 / ( )C t Cα κ κ∂ ∂ = Ω is 
substituted in Eq. (3), it becomes 
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One can assume that an initial axisymmetric turbu-

lence was generated by an axisymmetric strain of 
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isotropic turbulence at st t= −  just as in Kassinos 
and Reynolds [5]. Then the integral of the above 
equation can be rewritten as follows (See, Appendix): 
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where sK  is the turbulent kinetic energy at ,st t= −  

0
[ exp( )]

st
c Sdt

−
′≡ ∫  is the total strain rate in axial direc-

tion and ( )tF  is given as 
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Note that S  is the axial strain rate and cos .x φ≡  

Combining Eqs. (6) with (7) gives the analytic form 
of the rapid pressure-strain under the rapid distortion 
limit as 
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The above equation can be further simplified in 

terms of the well-known turbulent stress anisotropy 
tensor [ /(2 ) 1/ 3 ]ij ij ijb Kτ δ≡ −  where ( 0.5 )iiK τ≡  is 
the turbulent kinetic energy and ( )ij ijdτ κ≡ Φ∫

r  is the 
Reynolds stress tensor. Using Eq. (1), ijb  can be 
written as 
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and as a result, it is follows that 
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where subscript '0 '  represents initial instant and 
' '∞  represents the time at which, considering the 
rapid distortion solution for 5 ( , , ),C tκ α  the second 
integral of Eq. (10) vanishes as 4 .tΩ →∞  Applying 

Eq. (11) to Eq. (9) gives the representation of the 
rapid part of pressure-strain in terms of ijb  as 
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Introducing the anisotropy tensor of structure di-

mensionality [3] [ (2 ) 1/ 3 ]ij ij ijy Y K δ≡ −  that is deter-
mined by using Eq. (1) 
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Eq. (12) is also rewritten as 
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where a condition of , ,01/ 2ij ijb y∞ = −  is used. Note 

that 2( / )ij i j kkY dκ κ κ κ≡ Φ∫
r  is the structure dimen-

sionality tensor [3]. Equation (14) is the exact repre-
sentation of the rapid part of pressure-strain under the 
rapid distortion limit. 

Specific values of ,0ijb  and ,01/ 2 ijy  can be ob-
tained by applying the same procedure of Appendix 
to Eqs. (10) and (13), respectively. They are given in 
terms of total strain rate as 
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Fig. 1. Initial anisotropies of ijb  and ijy  depending on 
total axial strain rate. 

 
1
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Fig. 1 shows the variations of ,0ijb  and ,01/ 2 ijy  

depending on the total strain rate c  from 0.1  to 
2.5.  Here 1c >  and 1c <  cases are applicable to 
axisymmetric contraction and axisymmetric expan-
sion of isotropic turbulence, respectively. Note that 
the value of ,0ijb  obtained in the present study is 
identical to that of Lee [8], but its representation is 
different from Lee [8] because the velocity spectral 
tensor in physical coordinate is used in the present 
study (see Appendix). 
 

3. Results and discussions 

From now on, using Eq. (14), the behavior of the 
turbulent stress anisotropy tensor under the rapid rota-
tion is to be investigated. 

Integrating Eq. (4) over the whole Fourier space 
and rearranging leads to non-zero ijb  equation for 
rapidly rotating turbulence as follows: 
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,22 33
22

1 .
2

Rapidb b
t t K

Ω∂ ∂= = Π
∂ ∂

 

 
And the solution is found to be 
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where * 4 .t t≡ Ω  

Numerical integration of Eq. (17) for 0.1 2.5c≤ ≤   

 
 
Fig. 2. Behavior of turbulent stress anisotropy ijb  for 
0.1 2.5c≤ ≤  with 0.1.c∆ =  

 
is shown in Fig. 2 with 0.1c∆ =  difference. For 
axisymmetric expansion case of 0.1 1.0,c≤ <  the 
oscillatory damping behavior of ( *)ijb t  is found as 

*t  increases. 
ijb  is damped to ,00.5 ijy−  which is about half of 

the absolute magnitude of ,0ijb  (see, Fig. 1), and this 
damping accompanies oscillatory motion which is 
intensified as initial anisotropy increases. For axi-
symmetric contraction case of 1.0 2.5,c< ≤  one can 
also find the damping of .ijb  However, oscillation of 

ijb  is hardly observed except for very slight oscilla-
tory motion near 1.c =  These observations explain 
why the oscillatory behaviors are found differently 
between the results of Cambon, Jacquin and Lubrano 
[4] for 1c <  case (see their Fig. 2(a)) and that of 
Kassinos and Reynolds [5] for 1c >  case (see their 
Fig. 2 in appendix K), although they are produced by 
the same axisymmetric turbulence except different c  
values. To be more specific, considering Eq. (17) and 
(8), one can notice that the common damping feature 
of ijb  irrespective of c  is due to the decrease of 
period of cosine function in Eq. (8) as * .t →∞  Since 
the linear solution of the present study, which is Eq. 
(5), includes this very cosine function, the common 
damping feature can be attributed to the well-known 
rapid rotation effect on turbulence. That is, the phase 
scrambling [1, 2] or the scrambling of the initial po-
larization [4]. As for the origin of difference in the 
oscillatory motion of ijb  depending on ,c  one 
needs to do more scrutiny. For this, consider two 
extreme cases of total strain rate. 

Consider 0c →  case, first. This is the extreme 
case of axisymmetric expansion. As 0,c →  ,0ijb  
and ,01/ 2 ijy  are approximated as follows: 
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,0
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Note that all 2c  terms in Eq. (15) and (16) are ne-

glected in deriving the above results. Similarly, 
( *) / (0)tF F  is approximated as follows. As 0,c →  
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where 1( *)J t  is the Bessel function of the first kind 
of order one. 

Next, consider c →∞  case. This corresponds to 
the extreme case of axisymmetric contraction. As 

,c →∞  ,0ijb  and ,01/ 2 ijy  are approximated as fol-
lows: 
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Note that all 1c−  terms are neglected except that 
1c−  in denominators of integrand of Eq. (15) and (16) 

that is unrelated to x  are preserved in deriving these 
results. Likewise, ( *) / (0)tF F can be approximated 
for ,c →∞  

 

( )
( )
( )

( )

22
1

3/ 21 2 21

22
1

3/ 21 2 21

1 cos( * )

( *) 1.
(0) 1

x t x
dx

c c xt
x

dx
c c x

−−

−−

−

+
≈ ≈

−

+

∫

∫

F
F

 (21) 

 
As one can see from Eq. (21), the integrand except 

cosine term is a banded function around 0x =  and it 
gets narrower as .c →∞  Hence, the oscillatory na-
ture of cosine becomes ineffective as c →∞ , and as 
a result, any oscillatory behavior of ( *) / (0)tF F  is 
suppressed as .c →∞  Meanwhile, oscillatory be-
havior of ( *) / (0)tF F  is well developed as 0c →  
because the integrand of Eq. (19) approaches a well 
defined function for 1 1x− ≤ ≤  as 0.c →  These 
findings are compatible with the oscillatory feature of 

ijb  depending on the total strain rates. 

 
 
Fig. 3. Evolution of turbulent stress anisotropy on anisotropy 
invariant map for selected .c (state points • are the initial 
state and ⊕ are the final state.) 

 
Before conclusions, it is worthwhile to mention the 

physical implication of ( *) / (0) 1t ≈F F  in Eq. (21) as 
.c →∞  Fig. 3 shows the invariant maps of ijb  for 

the axisymmetric contraction case. The axisymmetric 
expansion case is also included in the figure. 

( )1/3
/ 6ij jk kib b bξ ≡  and ( )1/ 2

/ 6ij jib bη ≡  are used for 
coordinate axes. As can be seen in the figure, an ini-
tial and a final point on the invariant map approach 
asymptotically particular points such as ( 1/ 6,  1/ 6)−  
and (1/12,  1/12),  respectively as .c →∞  However, 
when the initial state is at ( 1/ 6,  1/ 6)−  exactly, an 
initially axisymmetric turbulence becomes an exact 
two-dimensional turbulence because 11,0 1/ 3y = −  at 
this state [1]. So, according to the material frame-
indifference of two-dimensional turbulence [3, 5], the 
initial turbulence state remains stagnant, and as a 
corollary, ( *) / (0)tF F  becomes '1'  irrespective of 

*.t  Eq. (17) really shows that ,0( *)ij ijb t b=  when 
( *) / (0) 1.t =F F  Note that if the initial turbulence 

state is different infinitesimally from the exact two 
dimensional state, the turbulence state will move to 
(1/12,  1/12)  but it never reaches the exact point. On 
the other hand, an initial and a final point on the in-
variant map also approach particular points such as 
(1/12,  1/12)  and ( 1/ 24,  1/ 24),−  respectively as 

0.c →  However, unlike the axisymmetric contrac-
tion case, the final turbulence state moves around 
( 1/ 24,  1/ 24)− , and eventually it reaches this very 
point when the initial point is at (1/12,  1/12)  ex-
actly as 0.c →  This is because turbulence does not 
have any special character such as two-dimensionality 
at (1/12,  1/12).  
 

4. Conclusions 

The analytic representation of the rapid part of the 
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pressure strain was obtained for the axisymmetric 
rotating homogeneous turbulence under rapid rotation. 
Combining it with the linearized equation of the tur-
bulence anisotropy tensor, the temporal variation of 
the turbulence stress anisotropy under the rapid rota-
tion was investigated. 

Through analysis, it was found that the damping of 
initial turbulence stress anisotropy is a common fea-
ture of rapidly rotating turbulence for both initial tur-
bulences generated by axisymmetric contraction and 
axisymmetric expansion of an isotropic turbulence 
due to the linear effect of rotation. 

Meanwhile, the oscillatory feature of the turbulence 
stress anisotropy was found to be different depending 
on the total strain applied to generate initial axisym-
metric turbulence. As for this, through the asymptotic 
approach, it has been verified that two-dimensionality 
of turbulence established at the infinity rate of the 
total strain satisfies the material frame-indifference 
principle under rapid rotation as a result the oscillat-
ing motion of the stress anisotropy is completely sup-
pressed. However, the turbulence never reaches the 
two-dimensional state and the oscillatory motion in 
the stress anisotropy is not suppressed either when the 
total strain approaches to zero. This finding implies 
that the dimensionality of turbulence is a factor for 
governing the oscillatory motion of the anisotropy of 
turbulence in the rotating homogeneous turbulence 
and explains the discrepancy found among previous 
researches. 

In reflection of the present result, any turbulence 
model to resolve the damping of the turbulence stress 
anisotropy should reproduce the linear effect of rapid 
rotation faithfully, and it also should be compatible 
with the material frame-indifference principle to re-
produce the exact oscillatory motions of stress anisot-
ropy. In this respect, our present analytic result can be 
used as a benchmark test problem for the develop-
ment of any rotating turbulence model. 
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Appendix: Derivation of Eq. (7) 

If an isotropic turbulence at st t= −  is strained axi-
symmetrically until 0,t =  then the velocity correla-
tion tensor 11R  at 0t =  is given in the strained co-
ordinate as [8] 

11 11( ,0) ( ,0) i rR r e dκκ κ•≡ Φ∫
r r
% %

r rr
% %%  
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2 2

23
23 2 2

1 23
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i rsE c e d
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κκ κ κ
π κ κ
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•

−
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r r
% %
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 (A1) 

where ( )sE κ%  is the spectrum function of isotropic 
turbulence at ,st t= −  2 2 2

23 2 3κ κ κ≡ +% % %  and ‘~’ repre-
sents a variable in the strained coordinate. Here, the 
total strain vector 1 2 3( , , )e e e e=r  defined by 

0
( )

st
e Exp S dtα αα−

′≡ ∫ (no summation in Greek indices) 

is used with the axisymmetric strain rate of 11S S=  
and 22 33 / 2.S S S= = −  Therefore, if 1e c=  then, 

2 3 1/ .e e c= =  However, the strained coordinate is 
related to the physical coordinate through /r r eα α α=%  
and eα α ακ κ=%  where rα  and ακ  are a separation 
vector and a wavenumber vector in physical coordi-
nate, respectively. Therefore, change of variables on 
the right hand side of Eq. (A1) in terms of ir  and iκ  
gives 

1 2
23

11 2 2

( )( ,0)
4

i rsE cR r e dκκ κ κ
πκ κ

−
•′

= ∫
r rr r

%  (A2) 
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where 2 2 1 2
1 23 .c cκ κ κ−′ ≡ +  Furthermore, 11R  in 

physical coordinate is also given by 
 

11 11( ,0) ( ,0) .i rR r e dκκ κ•= Φ∫
r rr rr  (A3) 

 
Since 2

1 11 11 00(0) ( ,0) | ( ,0) | ,rru R r R r === =r r
%

r r
%  equating Eq. 

(A2) and (A3) for 0r r= =
r r
%  gives the initial velocity 

spectral tensor at the physical coordinate as 
 

1 2
23

11 2 2

( )( ,0) .
4

sE cκ κκ
πκ κ

−′
Φ =r  (A4) 

 
In a similar manner, 22 ( ,0)κΦ r  and 33( ,0)κΦ r  in 

the physical coordinate can also be determined. Since 
the velocity spectral tensor components are deter-
mined in the physical coordinate, direct substitution 
of determined ( ,0)ij κΦ r  into 5 ( , ,0)C κ α  derived 
from Eq. (1) in terms of ( ,0)ij κΦ r  gives an equation 
as 

 
( )2

5 2 2 1 2
1 23

( )( , ,0) .
4
s

c cEC
c c

κκ α
π κ κ

−

−

−′
≡

+
 (A5) 

 
Using the above 5 ( , ,0),C κ α  then, Eq. (7) is deter-
mined by 
 

2 5
50 0

3 ( , ,0)cos 4 sin
2

C t d d
ππ ακ κ α φ φ κ

κ
∞ ⎛ ⎞Ω =⎜ ⎟

⎝ ⎠∫ ∫  

( ) ( )
( )

22
12

3/ 21 1 2 1

1 cos(4 )3
8

s
x txK c c dx

c c c
−

− − −

− Ω
−

⎡ ⎤+ −⎣ ⎦
∫  (A6) 

 
where change of variables such as 1 cosα κ κ φ= =  
and cos ,xφ =  and an integral of 
 

( )0 1 2 1 2
( ) s

s

KE d
c c c x

κ κ
∞

− −
′ =

+ −
∫  

 
are used. Note that sK  is the turbulent kinetic energy 
of isotropic turbulence at .st t= −  
 

Ju-Yeop Park received a B.S. 
degree in Mechanical Engineering 
from Yonsei University in 1991. 
He then went on to receive his 
M.S. and Ph.D. degrees from 
Korea Advanced Institute of 
Science and Technology in 1993 
and 1999, respectively. Dr. Park is 

currently a Senior Researcher at Korea Institute of Nu-
clear Safety in Daejeon, Korea. Dr. Park’s research inter-
ests are in the area of nuclear safety analysis, rotating 
turbulence, and computational fluid dynamics. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


